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Abstract. The force acting on a point charge inside a grounded conducting cavity is discussed.
This is a situation relevant to some quantum dot devices. We emphasize that care must be taken
when applying the image-charge method to this problem.

It is a basic problem in electrostatics to find the potential field of a given charge distribution
subject to stated boundary conditions. The resulting electrostatic potential gives the force
acting on an infinitesimal test charge. This is a standard topic in any electromagnetism text
such as [1–3]. Less often discussed is the following question: given a finite point chargeq inside
a conducting cavity, what is the force acting on this point charge itself? The difference from the
textbook situation is that an infinitesimal test charge does not contribute to the electromagnetic
field, whereas the finite charge that we consider obviously does. In addition, by asking what
force acts on it, we allow that it may move.

This question generally receives less attention in texts, although it is discussed, for
example, by Griffiths [2]. There is an apparent factor-of-two discrepancy between the correct
answer and the one that many would write down at first sight. This problem has been discussed
twice before in American Journal of Physics [4, 5], but we believe that this elementary
discussion will add to its understanding. In addition we present a non-trivial example of a
cubic cavity.

To clarify the concept, we review the simplest problem of the kind: a point charge near a
grounded infinite conducting plate: see figure 1. This well-worn problem is solved by placing
an opposite charge at the mirror image position. Taking the grounded plane as z = 0, and the
point charge q at (0, 0, a), the electrostatic potential function is

V (x, y, z) = q

4πε0

(
1

r+
− 1

r−

)
(1)

where

r± =
√
x2 + y2 + (z ∓ a)2

are the distances of an infinitesimal test charge at (x, y, z) from the point charge q and its
image −q at (0, 0,−a).

The charge q induces a surface charge distribution on the plate. These induced charges
in turn attract the original charge q. The question is, what is the potential function consistent
with this attractive force?
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Figure 1. Charge q at distance a from a grounded plane.

On the one hand, the attractive force between q and its image is:

F = − q2

4πε0(2a)2
(2)

for which the associated potential energy (we use the letter U ∼ qV to denote a potential
energy as distinct from an electrostatic potential which is measured per unit charge) is

U = − q2

4πε0(4a)
. (3)

On the other hand, the electrostatic potential energy of a charge q in the presence of its image,
a distance 2a away, is

Û = − q2

4πε0(2a)
(4)

which is twice equation (3). This is the famous factor of two. Which potential is the relevant
one?

The answer is found by analysing the charge layer induced on the grounded plane, which
we compute using Gauss’s theorem. The electric field parallel to the plate is zero, while the
normal component is

Ez|z=0 = −∂V

∂z
= − aq

2πε0R3
(5)

where R =
√
a2 + x2 + y2 is the distance from a point on the plane to the charge q. This gives

the induced charge density as

σ = ε0Ez = − aq

2πR3
. (6)

This leads to a total induced charge of Q = −q, as expected:

Q =
∫

σ(R)2πr dr = −q. (7)

The total electrostatic force on the charge q is the sum of the forces of the induced charges:

Fz = q

4πε0

∫ ∞

0

cos θ σ2πr dr

R2
= − q2

4πε0

∫ ∞

0

cos2 θ r dr

R4
= − q2

4πε0(2a)2
(8)
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where θ is defined in figure 1, and both r and R are functions of θ . This confirms that the
force of equation (2) derived from the image-charge method is the correct one. The effective
potential is the negative of this force integrated over the distance a, confirming equation (3).

So what is the problem with equation (4)? To understand this, we first calculate the total
potential energy of the charge q in the presence of the induced charges on the plane:

Uq,induced = q

4πε0

∫ ∞

0

σ2πr dr

R
= − q2

4πε0

∫ ∞

0

cos θ r dr

R3

= − q2

4πε0a

∫ π/2

0
cos θ sin θ dθ = − q2

4πε0(2a)
.

(9)

This agrees with equation (4). This energy can be computed either as the potential energy of
q due to its image, or that of q due to the induced charges. But here is the point: the total
electrostatic energy is the work done in assembling the system, i.e. bringing the charge q from
infinity to distance a in front of the plate, including the work done on the induced charge
distribution. When you approach the solution from the image-charge viewpoint, you are likely
to overlook the self-energy of the induced charges.

α

ρ

φ

r

x

y

p

p
2

1

Figure 2. Coordinates for integrating the self-energy of
the induced charge in the z = 0 plane. σi is the induced
charge density at a point pi.

The self-energy of the induced charge changes as q moves. It can be expressed as a double
integral over the z = 0 plane (see figure 2):

Uself = 1

2

1

4πε0

∫ ∫ ∫ ∫
(σ1r dr dφ)(σ2ρ dρ dα)

ρ

= 1

2

∫ ∫
σ1r dr dφ

1

4πε0

∫ ∫
σ2 dρdα.

(10)

We relegate the details to the appendix, and quote the result

Uself = 1

4πε0

q2

4a
. (11)

This cancels half of equation (9), giving the total potential energy

U = − 1

4πε0

q2

4a
(12)

in agreement with equation (3).
This result is well known to surface physicists (see [6], which contains a complete

discussion of the history of surface states with references to the original papers, and [7]).
It is the basis for the Schottky effect, the lowering of the work function when electrons are
removed from a metal surface by an applied electric field: see for example [8]. Despite its
simplicity, the example shows that one should be careful in applying the image-charge method,
a point which was briefly mentioned by Landau and Lifshitz [9]. A more detailed discussion
of the case where a point charge lies between two parallel conducting plates can be found in
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the recent text by Schwinger et al [10]. Griffiths [2] explains the factor of two as arising from
the fact that the conducting plane divides space into two halves, and the energy stored in the
field is obtained by integrating over only the half space containing the charge q. This certainly
works for the plane boundary, but it is less obviously helpful in our next example.

A grounded sphere is a second situation where an exact solution can be obtained by the
image-charge method. A point charge q located at distance r from the centre, inside the sphere,
has an image q ′ at distance r ′ from the centre. The charge q, its image, and the centre of the
sphere lie on a straight line, as illustrated in figure 3.

q’
R

O

P

θ
q r

Figure 3. Coordinates for the image-charge method for
a sphere.

The condition for having zero potential at any point P on the sphere yields the values

r ′ = R2

r
q ′ = −R

r
q. (13)

The force acting on q is

F = q2Rr

4πε0(R2 − r2)2
r̂ (14)

and is equivalent to a potential of the form

U = −
∫

F · dr = −q2

4πε0

∫
Rr dr

(R2 − r2)2
= − q2

8πε0

R

(R2 − r2)
+ U0 (15)

where U0 is a constant of integration which can be set to zero. Note that, just as for the
grounded plane problem, U is half of the potential energy of q in the presence of its image
charge q ′:

Uqq ′ = − q2

4πε0

R

(R2 − r2)
. (16)

The above examples are those considered by Prato and Condat [4], who also cite some older
references that we have not seen.

We now discuss the general situation of a point charge q at position r0 inside a grounded
conductor of arbitrary shape. We shall find the force acting on this charge and the potential
associated with it.

The electrostatic potential for this problem is V = (q/ε0)G(r − r0), where G(r − r0) is
the Green’s function which satisfies:

∇2G(r − r0) = −δ(r − r0) (17)

with Dirichlet boundary condition G = 0 when r lies on the surface. This is the approach
adopted by Pomer [5].

Clearly, the Green’s function G(r − r0) is symmetric under exchange of its arguments.
The desired potential V is the result of the charge q and of the induced charges. Therefore,
the electric potential due to the induced charge alone is

Vinduced(r, r0) = q

ε0
G(r, r0) − q

4πε0|r − r0| (18)

which shows that Vinduced also is symmetrical with respect to r and r0.
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Another way to derive Vinduced is to notice that it is the solution of Laplace’s equation with
boundary value −q/[4πε0|r − r0|] on the surface. This can be constructed numerically or by
means of Green’s theorem:

Vinduced(r, r0) =
∮

q

4πε0|r′ − r0|∇r′G(r′, r) · dA′. (19)

Since equation (19) is equivalent to equation (18), it must also be symmetrical under interchange
of r and r0. The force on the charge q is

F (r0) = −q∇rVinduced(r, r0)|r=r0 . (20)

Defining

U(r0) = q

2
Vinduced(r0, r0) (21)

we have

−∇r0U(r0) = −q

2

[∇rVinduced(r, r0)|r=r0 + ∇r0Vinduced(r, r0)|r=r0

] = F (r0). (22)

In the last step, we have used the symmetry property of Vinduced(r, r0). This shows that U(r0)
is the proper potential energy to describe the effect of the surface induced charges on the point
charge itself.

So here is the recipe expressed in equations (18)–(21). For any position r0 of the point
charge q, solve the electrostatic problem for a point charge q at this position with Dirichlet
boundary condition. From this electric potential remove that generated by q itself, namely
q/(4πε0|r − r0|). Half of the resulting potential times q, at r = r0, is the answer.

As an example, we computed the potential energy of a point charge inside a grounded cube.
We solved Laplace’s equation with boundary value −1/|r0−r| on a grid 41×41×41 = 68 921
points. We used a simple finite-difference plus successive over-relaxation linear equation
solver. Taking into account the symmetry properties of the cube, we had to solve Laplace’s
equation 1540 times. It took somewhat less than two hours on a P-II 300 MHz Linux machine.
Figure 4 shows two cross sections of the potential.

As one can see in figure 4, the potential profiles at different z-values are similar in that
there is a plateau in the centre and the potential drops quickly as we approach any surface. The
difference between the two cuts is that, for the top part of the figure, we are already very close
to one surface of the box, so the platform is much lower and flatter.

Based on the observation that, as one approaches the box surface, the potential should
behave as −q2/(4πε0 4a), we found the following empirical formula for it:

Ũ = 4πε0

q2
U(x) = −1

4

(
1

x
+

1

d − x
+

1

y
+

1

d − y
+

1

z
+

1

d − z

)

+
2.1

d
+

6

d5

[(
d

2
− x

)2

+

(
d

2
− y

)2

+

(
d

2
− z

)2
]2

+
12

d5

[(
d

2
−x

)2 (
d

2
−y

)2

+

(
d

2
−y

)2 (
d

2
−z

)2

+

(
d

2
−z

)2 (
d

2
−x

)2
]

(23)

where d is the edge length. In figure 5 we plot the potential Ũ (in dimensionless form, as in
equation (23)) from the numerical calculation and compare it with the empirical formula.

Our interest in the question discussed in this paper is related to applications in
nanoelectronics. A quantum dot is a structure of very small dimensions, of the order of
tens of nanometres, in which a small number of electrons can be confined. Being man-made,
they are often called artificial atoms. If the materials are very pure, electrons scatter only from
the walls of the enclosure and can be regarded as trapped in a potential well. (Ashoori [11],
for example, has described recent research on quantum dots.) Depending on the materials
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Figure 4. Effective potential of a point charge
inside a grounded cubic cavity, scaled to edge length
d = 1. The grid size is d/40. The top part is the
potential profile at z = 0.05d while the lower part
is a cut at z = 0.5d . The potential is in units of
q2/(4πε0d).

involved, the confining potential may be smooth, like an oscillator, or abrupt like a square
well. For the tiny Si–SiO2 dots fabricated in Tübingen [12], the abrupt potential well is more
appropriate. The example discussed above would be a possible model for a cubic dot. As
figure 5 shows, the potential due to the induced charge curves downwards as an electron
approaches the edge of the quantum dot, steepening the walls.

In summary, we have clarified the question of the potential energy of a shielded charge. A
recipe for constructing such a potential is given and the cubic cavity was studied as a non-trivial
example.
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Figure 5. Effective potential of a point charge
inside a grounded cubic cavity as computed
numerically (solid line) and from our empirical
formula (dotted line). For selected points on the
x–y plane, the potential is plotted as a function
of z. The data and the energy units are as in
figure 4.
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Appendix. Self-energy of the induced surface charges

We choose polar coordinates (r, φ) for the point P1, and relative coordinates ρ, α for the vector
joining P2 to P1. The integral I1 = (4πε0)

−1
∫ ∫

σ2 dρ dα can be regarded as the electrostatic
potential due to all induced charges, at the point P1. The charge density σ2 depends on R2, the
distance from P2 to the charge q:

R2
2 = a2 + r2 + ρ2 − 2rρ cos α. (A1)

Using equation (6), we have:

I1 = − 1

4πε0

aq

2π

∫ ∫
dρ dα

(a2 + r2 + ρ2 − 2rρ cos α)3/2

= 1

4πε0

aq

2π

∫
(ρ − r cos α) dα

(r2 cos2 α − a2 − r2)
√
a2 + r2 + ρ2 − 2rρ cos α

∣∣∣∣∣
∞

0

= − 1

4πε0

aq

2π
√

a2 + r2

∫ 2π

0

dα√
a2 + r2 − r cos α

= − 1

4πε0

aq

2π
√

a2 + r2

2π

a
= − q

4πε0R1

(A2)

where R1 is the distance from the point P1 to the charge q. The integral over α was evaluated
by a standard result in contour integration. We notice that I1 is also the electrostatic potential
of the image charge at the point P1. Continuing, the self-energy is

Uself = 1

2

∫ ∫
σ1r dr dφ

(−q)

4πε0R1
= −1

2

q

4πε0

∫ ∞

0

σ1 2π r dr

R1
. (A3)

Except for a factor of −1/2, this is the same as (9).
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